Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.22.481430

ABSTRACT

ABSTRACT Delta variant of SARS-CoV-2 has caused more severe infections than its previous variants. We studied the host innate immune response to Delta, Alpha and two earlier variants to map the evolution of the recent ones. Our biochemical and transcriptomic studies reveal that Alpha and Delta have progressively evolved over the ancestral variants by silencing innate immune response, thereby limiting cytokine and chemokine production. Though Alpha silenced RLR pathway just as Delta, it failed to persistently silence the innate immune response unlike Delta. Both Alpha and Delta have evolved to resist IFN treatment while they are still susceptible to RLR activation, further highlighting the importance of RLR-mediated, IFN-independent mechanisms in restricting SARS-CoV-2. Our studies reveal that SARS-CoV-2 Delta has integrated multiple mechanisms to silence host innate immune response and evade IFN response. Delta’s silent replication and sustained suppression of host innate immune response, possibly resulting in delayed or reduced intervention by the adaptive immune response, could potentially contribute to the severe symptoms and poor recovery index associated with it.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.13.443721

ABSTRACT

Background: One of the most perplexing aspects of infection with the SARS-CoV-2 virus has been the variable response elicited in its human hosts. Investigating the transcriptional changes in individuals affected by COVID-19 can help understand and predict the degree of illness and guide clinical outcomes in diverse backgrounds. Methods: Analysis of host transcriptome variations via RNA sequencing from naso/oropharyngeal swabs of COVID-19 patients. Results: We report strong upregulation of the innate immune response, especially type I interferon pathway, upon SARS-CoV-2 infection. Upregulated genes were subjected to a comparative meta-analysis using global datasets to identify a common network of interferon stimulated and viral response genes that mediate the host response and resolution of infection. A large proportion of mis-regulated genes showed a reduction in expression level, suggesting an overall decrease in host mRNA production. Significantly downregulated genes included those encoding olfactory, taste and neuro-sensory receptors. Many pro-inflammatory markers and cytokines were also downregulated or remained unchanged in the COVID-19 patients. Finally, a large number of non-coding RNAs were identified as down-regulated, with a few of the lncRNAs associated with functional roles in directing the response to viral infection. Conclusions: SARS-CoV-2 infection results in the robust activation of the innate immunity. Reduction of gene expression is well correlated with the clinical manifestations and symptoms of COVID-19 such as the loss of smell and taste, and myocardial and neurological complications. This study provides a critical dataset of genes that will enhance our understanding of the nature and prognosis of COVID-19.


Subject(s)
COVID-19 , Cardiomyopathies , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL